Unified Representation Of Decoupled Dynamic Models For Pendulum-Driven Ball-Shaped Robots

نویسندگان

  • Tomi Ylikorpi
  • Pekka Forsman
  • Aarne Halme
  • Jari Saarinen
چکیده

Dynamic models describing the ball-robot motion form the basis for developments in ball-robot mechanics and motion control systems. For this paper, we have conducted a literature review of decoupled forwardmotion models for pendulum-driven ball-shaped robots. The existing models in the literature apply several different conventions in system definition and parameter notation. Even if describing the same mechanical system, the diversity in conventions leads into dynamic models with different forms. As a result, it is difficult to compare, reproduce and apply the models available in the literature. Based on the literature review, we reformulate all common variations of decoupled dynamic forward-motion models using a unified notation and formulation. We have verified all reformulated models through simulations, and present the simulation results for a selected model. In addition, we demonstrate the different system behavior resulting from different ways to apply the pendulum reaction torque, a variation that can be found in the literature. For anyone working with the ball-robots, the unified compilation of the reformulated dynamic models provides an easy access to the models, as well as to the related work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Overcoming Capability of Pendulum-driven Ball-Shaped Robots

This paper discusses dynamic step-crossing capability of pendulum-driven ball-shaped robots. We introduce an extended dynamic model that allows modeling of ballrobot rolling, bouncing and slipping. Based on the new model, our simulations predict the maximum over-passable step-height for the robot. The simulation results agree well with the result from a parallel simulation in Adamssoftware as w...

متن کامل

Trajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control

In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...

متن کامل

Stability Analysis and Robust PID Control of Cable Driven Robots Considering Elasticity in Cables

In this paper robust PID control of fully-constrained cable driven parallel manipulators with elastic cables is studied in detail. In dynamic analysis, it is assumed that the dominant dynamics of cable can be approximated by linear axial spring. To develop the idea of control for cable robots with elastic cables, a robust PID control for cable driven robots with ideal rigid cables is firstly de...

متن کامل

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...

متن کامل

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014